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From this an-ysis, one has to solve a system of ODE's for' tne
parameters of the soliton.

This has been done on the VAX. W . hive also integrated numrically the
full problem to see the effects of radiation.



All iuarzcddini

His work has been concentratcd on solving numerically the Ginzburg-Landau
equation, sometimes referred to as the Newell-Whitehead equation, which has
many physic.l a:plicatons. Tne equation is:

-"( " )W = X;i- (,Rr + i)W' W,

t r i xx

The boundary conditions are periodic.

Different parameter values are used to check the stability of the x-
independent and the soliton solutions. The equation is integrated in time
using a pseudo-spectral method. The linear part of the equation is solved
for half time step using the FFT (the Fast Fourier Transform). The
nonlinear part is solved exactly for the remaining half-time step. Data is

collected and analyzed.
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Christopher Jones

Current Research

There are two major projects that form a focus for my research at

the moment. The first is a stability problem for travelling waves in a

fast-slow system of reaction-diffusion equations. The travelling wave is

constructed by piecing together solutions of reduced problems and the

question is to understand how the stability information for these reduced

problems is put together to determine the stability of the full problem.

This is related to my earlier work on the FitzHugh-Nagumo equations but

significantly more difficult as the underlying phase space dimension is

4 rather than 3. R. Gardner of the University of Massachusetts proved

the existence of the waves and the extra space dimension translates into

non-trivial behavior in the slow part of the system. The understanding

of the effect of this new feature on the stability problem is quite

subtle. Gardner and I are working on this problem jointly.

The second problem relates to standing wave solutions of the nonlinear

Schr~dinger equations. I have proved an instability result and applied

it to nonlinear optical waveguides with Moloney. I am currently involved

in extending the results to a wider class of waves. But what is more

interesting is that the results have suggested some striking connections

between the methods of proof used to find the waves in the first place,

namely, the dynamical systems approach (as developed by Kipper and myself)

and the variational approach (as develcped by Strauss and Berestycki-Lions).

These techniques have up until now developed independently and a relationship

between them will, I believe, open up the possibility of exciting new results.
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Instability of Standing Waves in Nonlinear Optical Waveguides

C.K.R.T. Jones

Department of Mathematics

University of Arizona

% 'Tucson, Arizona 85721

U.S .A.

and

J.V. Moloney

Physics Department

He'iot-Watt University

Riccarton, Edinburgh EHI4 4AS
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.4.

PACS numbers: 02.78 42.20

:4

Abstract

A new mathematical instability technique is presented and applied to

determine the stability properties of a physically important class of

standing waves in nonlinear planar optical waveguides. The method is

illustrated by a case where soliton perturbation techniques or variational

methods are inapplicable.
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New Class of Instabilities in Passive Optical Cavities

D. W. McLaughlin, J. V. Moloney, and A. C. Newell
Applied Mathematics Program and Optical Science C'nter, UniversitY. ol A r:ona, Tucson, A rizona 85721

(Received 2 July 1984)

In this Letter we show that the fixed points of the Ikeda map are more unstable to perturbations
with a short-scale transverse structure than to plane-wave perturbations. We correctly predict the
most unstable wavelength, the critical intensity, and th~e growth rats ol these disturbances. Our
result establishes that, for a large class of nonlinear waves, spatial structure is inevitable and drasti-
cally alters the route to chaos. In an optical cavity the consequence is that the period-doubling cas-
cade is an unlikely scenario for transition to optical chaos.

PACS numbers: 42.65.-k

In this Letter, we announce a new and unexpected in which diffraction effects are neglected. The purpose
result, an instability whose consequences have ramifi- of this Letter is to point out that this assumption is not
cations for a large class of nonlinear wave problems justified even for cases in which the input beam is very
whose dynamics can be described by envelope equa- slowly varying in the transverse direction x(xy) and
tions. Specifically, it deals with periodically forced the Fresnel number is large. The reason is that the
field equations of the universal nonlinear Schr6dinger fixed point solutions of the plane-wave map (1) are
type. This instability changes the whole character of more unstable to perturbations with a short-scale
the route of the system from a simple to a turbulent transverse structure than they are to perturbations
state. It generates spatial structure, and the subse- with plane-wave structure. To emphasize this point,
quent onset of chaotic behavior completely bypasses the numerical experiment discussed in this Letter is
the period-doubling scenario which is relevant if spa- run at a parameter value p for which the fixed points
tial structure is ignored. Moreover, the scenario which of the Ikeda map are stable!
does emerge has a universal character of its own. Lx- This discover;7 has important ramifications. First, it
amples of this phenomena are found in optics, either shows that the initial bifurcation of the system intro-
in the transmission along optical fibers or in optically duces an extra dimension into the problem, a short-
bistable cavities. t It is in the latter context that this wave transvCrsc excitation of temporal period two.
work is presented. This extra dimension affects significantly the subse-

In this problem we are interested in the long-time quent behavior of the system. As the stress parame-
state of a continuous laser signal which is recirculated ters are raised, no period-doubling cascades into chaos
through a nonlinear medium. In examining one par-
ticular manifestation of optical bistability (a ring cavity
with Kerr nonlinearity), Ikeda2 wrote a map expressing (a)
the (complex) amplitude g, I of the electric field E D

on the (n + l)st pass through the cavity as a function
of electric field amplitude on the nth pass- 1I1

g.+ I = a + Rg,, exp[ i 0o + ipLN(1)/21. (1) B
A

In (1), a is the amplitude of the input field, R < I the a
reflectivity of the mirrors, 00 the detuning parameter,
p is (effectively) the length of the nonlinear medium,
and N(gfg, ) measures its nonlinear response. Two
cases are usually studied: (I) the saturable medium, °°' I 25

N(i) - (I +21)t (2) the Kerr medium, N(I) 00--------

=- I + 2!, which is the small intensity limit of the 075-
- . saturable case. Equation (1), called the Ikeda map, is 50

a two-dimensional invertible map and exhibits a 025
variety of behavior which is already well documented
in the literature.2-4 In various parameter ranges (the 0o 05 0 1.5 20
two parameters which are varied are a and p), one
finds multiple fixed points (see Fig. 1) and sequences FIG. I. (a) The multivalued response of the amplitude of
of period-doubling bifurcations leading to chaotic at- the fixed point IgI vs a at fixed values of p for the Ikeda
tractors. map. (b) A graph of b(I.,r) vs f.fr=.,'-fKforu-pl pgg°

The map (1) invokes the plane-wave approximation equal to 0.11 and 0.24.
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ability of nonlinear stationary waves guided by a thin film bounded
by nonlin I ia

! Moloey. .

hyics Departm Ileriot Watt University Riccarton, Edinburgh EIIJ4 4AS. Scoil.cid
-: UC T. Seaton, and G. I. Stegeman
Optical Sciences Center and Arizona Research Laboratories. University ofArizona. T':_son. - 'izona 85721

(Received 2 December 1985; accepted for publication 3 February 1986)

The stability of stationary, TED-type, nonlinear, thin-film guided waves was in, estigated
numerically for both symmetric and asymmetric planar waveguides with nonlinear cladding and
substrate layers. It is found that large regions of the dispersion curves are unstable at high powers.

Unique properties' - 7 have been predicted for waves n2 [ W(x,z) 2 ] = n c, 1 W(xz)
guided by thin films when one or more of the guiding media 1. ( (2a)
exhibit a field-dependent refractive index. Self-focusing 22a)

bounding media lead to multiple new branches with power and

thresholds, as well as field distributions whose maxima shift n2 [I W(xz) 2) n: ( xl<d) . (2b)
from the film to the bounding media with increasing pov- Substituting into the nonlinear wave equation and retaining
er.'-' In fact, this geometry has been identified as an excel- only the first derivat: e of IV(xz) with respect to z leads to
lent candidate for all-optical switching, with our without
bistability. - To date, however, theoretical analysis has been 2ik,, +W(x) 0k2 : x,)
based solely on steady-state solutions to a nonlinear wave 3z 3X2

equation which contains an intensity-dependent refractive X0 2 - n2 [Wxz)-Z]}W(x,z) = 0. (3)
index. The salient question is whether these wave solutions Analytical stabil!ty analysis of Eq. (3) is complicated by
are stable on propagation, and the consequences of possible the fact that it is a partial differential equation and, further-
unstable regions to proposed devices. For the related prob- more, is a Hamilton:an system. The usual stability analysis

lem of self-focusing of plane waves in infinite media, Kolo- for dissipative dynamical systems does not apply (unless one

kolov has shown that the solutions are stable for dP/did> 0 deliberately introduces losses into the problem). One reason
wherePisthepowerandgisthepower-dependent refractive for the difficulty in siudving the stabilit. of Eq. (3) is that
index. Numerical propagation studies of nonlinear waves many of the eigenvalues of the linearization of (3) lie on the
guided by the interface between a self-focusing and a power- imaginary axis which is precisely the condition for instability
independent medium by Akhmediev and co-workers'"1  in a dissipative dynamical system. Although it has been pos-
have led to a similar conclusion. Recently, a theory based on sible " to perform a s:abilit* analysis for TE,, with m = 0, it

phase portraits has been developed'' for the stability of TE,, is necessary to proceed numerically for tn =0. First, the
waves guided by a thin film bounded by self-focusing media, steady-state solutions ', ith W(x,z)--. W(x) were obtained in
and the important conclusion of that work is that the waves the usual way' - to ortain a field solution corresponding to a
are unstable on negatively sloped branches (dP d13 < 0) of particular pointto o ne of the nonlinear guided wave solu-

the nonlinear dispersion curve, and that they are stable on tion branches. This distribution was then assumed to be

positively sloped regions provided that self-focusing occurs launched at z = 0 and Eq. (3) was solved numerically for

in only one nonlinear medium. In this letter we report a test

of this conclusion via a numerical investigation of the stabil- Z
ity of TE,, solutions for films bounded by self-focusing me- ..
dia. 0

The geometry analyzed consists of a film (ix! <d, re-
fractive index n,, ) bounded by two nonlinear media with low 2d-

power indices n , and n:, as shown in Fig. 1. Since the numeri-
cal analysis is performed in the slowly varying phase and
amplitude approximation, we write the optical field as n,+aIEi z  no n,

E(r) = k1W(xz)e " Oka - " + Cc. , (I)

where/ is the effective guided wave index. k, = 2,J/c and the
variation in the amplitude term W(x.:) along the propaga-
tion direction z is assumed to be small over one wavelength.

The refractive index in the various media is given by FIG I Nonlinear Aa~ .ctry studied for .aae stabilitt

O2; ~ ~ ~ t 48,- ('( q 11 ) 3* Ma- td , .nQ, A' ,; Io. -: 01S01 0,0'::.Z .rCtt ''' . ' :S
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Chaos and Turbulence; is there a

connection?

by

Alan C. Newell*

Department of Mathematics
University of Arizona

Tucson, Arizona 85721

Abstract. In this essay we discuss the relation of chaos, which is
the unpredictable behavior associated with finite systems of ordinary
differential and difference equations, and turbulence, which is the
unpredictable behavior of solutions of infinite dimensional, nonlinear
partial differential equations. The evidence that there is some
connection, at least in certain regimes of parameter space, is
sufficiently convincing to provide the motivation to search for
analytical means for reducing the governing partial differential
equations to either a finite system of ordinary differential equations
or a much simpler partial differential equation of universal type. A
successful reduction scheme must capture the spatial structure of the
dominant modes accurately and we suggest ways of finding these
structures in certain limiting situations. Five such schemes are
presented and, in each case, the approximation is related in some way
to the presence of a small parameter, near critical, nearly
integrable or nearly periodic. One of these reductions leads to the
complex Ginzburg-Landau equation, which has universal character, and
its importance is stressed. In connection with this equation, we
introduce the terms "wimpy" turbulence and "macho" turbulence to
connote the crucial differences between the behavior of its solution
in one and two space dimensions, a difference which has much in common
with the contrast between two and three dimensional high Reynolds
number flows because of vorticity production. In the final section,
several ideas concerning the nature of high Reynolds number, fully
developed turbulence are presented and the possible roles of singular
solutions and "fuzzy" attractors are discussed. Throughout the essay,
we argue that before much new progress is made, one has to understand
the onset of spatial chaos, that is, the transition from a spatially
regular state (possibly with a chaotic temporal behavior) to one in
which the spatial power spectrum is broadband. This question is a
major focus of our present research program.

This contribution is dedicated to the memory of Dick DiPrima, a

good friend and long time colleague who left us too soon.

Supported by NSF-DMS-8403187, AFOSR - 83-0227, Army - DAAG-29-85-K091,
ONR Physics - N00014-84-K-0420, ONR Engineering - N00014-85-K-0412.
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The geometry of the Hill equation and of the Neumann system

By N. M. ERCOLANIt AND H. FLASCHKA

Department of Mathematics, The University of Arizona, Tucson, Arizona 85721, U.S.A.

Let there be given a finite:gap operator L = d2/dx 2 + q and its Baker function V1(x, p),
which is analytic forp on a certain hyperelliptic curve C. It is shown that a sequence
of Backlund transformations maps C to a projective space. This embedding can be
interpreted as a matrix representation of the Hill equation by the Neumann system
of constrained harmonic oscillators. The image curve, C', lies on a rational ruled
surface; the structure of this surface is explained by use of ideas due to Burchnall &
Chaundv (Proc. R. Soc. Lond. A 118, 557-583 (1928)). Baker functions and Bdcklund
transformations are then used to define a (many-to-many) correspondence between
effective divisors on the curve C and points lying on a quadric, or in the intersection
of two or more quadrics. This relates the theory of the Hill equation to earlier work
of Knorrer, Moser and Reid. It is then shown that the Kummer image of theJacobian
of C can be realized as a hypersurface in the space of momentum variables of the
Neumann system. Further projects, such as extensions to non-hyperelliptic curves, are
outlined. -

, 1. INTRODUCTION

A differential operator L = D2 +q(x), 1) = d/dx, is said to be 'finite-gap' if it commutes with

a differential operator B of odd order, [L, B] = 0. A 'finite-gap potential' q(x) is therefbre a
time-independent, or stationary, solution of an equation aL/ t = [B, L] in the Korteweg- de
Vries hierarchy. Because L and B commute, they have a common cigenfunction

LVf -~f

The eigenvalues E, R are known to be related by an algebraic equation

2J 4 1

R' = I1 (A-
J-I

and the common eigenfunction (the 'Baker function') is an analytic function on the Riemann
surface (1) or, equivalently, a holomorphic section of a certain line bundle on (1). Until now,

the theory of finite-gap operators has drawn mostly on the analytical aspects of Riemann
surfaces and on their abstract, intrinsic geometry.

Our aim in this paper is to explain some of the extrinsic properties of the curves, line bundles,
and isospectral tori (Jacobians) when those are embedded as concrete objects in a projective
space.

There are several reasons for studying geometric realizations of the finite-gap operator theory.
The classical theory ofcurves andJacobians is very beautiful, and an interesting statement about
abstract curves and line bundles should be worth repeating about concrete representations.

Furthermore, when one integrable system, like the stationary Lax equation [L, B] = 0, is

t Permanent address: Department of Mathematics, Ohio State University, Columbus, Ohio 43210, U.S . A.
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It i, h,-mn that the1 ftructure o.f the tatiltonar\, kk localtOT
, 

%%iIuCI OcCLU[ III a!' \%I LIeC of pattern, H1(III on quIlibhiumf

s%,tem 
, 
ie en b\ a elf(-lmidar s'lmutiii of the univers~a Cros-Newell equation.

-

There has been a tremendous resurgence of interest phase 0 whose gradient is the constant wavevector
lately in the structure and properties of symmetry k. The periodicity demand gives rise to a relation

breaking instabilities in driven systems far from equi- (equivalent to the frequency dependency on ampli-
librium. The planfornis and patterns which emerge tude in nonlinear oscillators)
from these instabilities are observed in a wide variety o(k.AR) =0 -(2)

of physical situations, from convection in fluids, in
liquid crystals and in binary mixtures to the solidifi- between the wavenumber k = Ikl. the amplitude A
cation processes in undercooled liquids. Of particular and the stress parameter R which in thc case of con-
interest are patterns which form in large aspect ratio vection is tihe Rayleigh number. The appearance of
systems; for example. the Rayleigh--Bdnard convec- the modulus of k reflects the rotational symmetry.
tion of a Boussinesq fluid in a box wide enough to The regions of stability of these solutions in the R. k
contain many rolls. Although for certain parameter plane have been mapped out by Busse 121 (the Busse .
ranges and in infinite horizontal geometries, there balloon).
exist stable, fully nonlinear, spatially periodic solu- The ('ross-- Newell theory develops a universal
tions of the Oberbeck-Boussmesq equations phase equation for the slowly changing wavevector k,

a change necessitated by the influence of distant, but
ulx, t) =(0, A, R), ( 1) finitely distant, horizontal boundaries to which the
which correspond to a field of inlimlely long, straight, roll axis is perpendicular (if the thermal contact be-
parallel rolls, the patterns which are typically seen tween wall and fluid is good). For order one values

are much more complicated, involving patches of of R - R c R is the transition value at which rolls
curved rolls, defects such as roll dislocations and first appear), the amplitude is still determined algebrai-
grain boundaries. In an effort to treat the statics and cally in terms of the phase gradient by (2). In the ab-
slow dynamics of these patterns, Cross and Newell sence of the mean drift effect, which we do not con-
[ I developed a theory which averages over the de- sider here, the phase equation is
tailed local structure of the rolls and concentrates on
the global and universal properties of the pattern it- -(k)O + V(kB(k)) + F(k) (DI D 2 + D 2 D I )A

self. The starting point of the theory is the existence + ... 0 (3)
and stability of the solution ( I ) representing the " -

underlying roll structure. I lere f is 27r periodic in the where the functions r(k) > 0, B(k) and Fb(k are cal-
culated easily from the particular model of interest

t),partmnen ,f Applied Mathcmatic. (allech. P'daaden,. (see ref. I II) and the operators D aInd D 2 are 2k' V
(\41125. t'SA + V-k and V 2, respectively. The function B(k) always

0.375-9601185/S 03.30 © Llsevier Science Publishers B.V 28)
(North-Holland Physics Publishing Division)
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CHAPTER 4

AN APPLICATION: THE ROLL-UP OF A FINITE VORTEX LAYER

The evolution and regularity of vorticity distributions with

varying degrees of smoothness are of great interest to those who

study the Euler equations of fluid flow. A periodically perturbed

vortex sheet, for example, is now widely believed to acquire a

curvature singularity in finite time. Using the methods developed in

Chapters 2 and 3 for the highly accurate ajoplication of boundary

integral methods to multiply connected domains, the reyularity of a

thin, periodic layer of constant vorticity is investigated

numerically. Numerical results suggest that, like the vortex sheet,

the interfaces develop a curvature singularity, but now only in

infinite time.

1. Background

The simplest model of a niyh Reynolds number shear layer is a

surface of discontinuity, or vortex sheet, between two shearing,

inviscid, irrotational fluids as pictured schematically in Figure 11.

The instability of such an interface is prototypic and is the well-

known Kelvin-Helmholtz instability. For simplicity, assume the fluid

is of uniform density, and that u + +Uj as y + ±-. Then the

linear evolution of a normal mode of amplitude A(k,t) and wave

number k is given by

68

|..c

I IIIIII



ORDER PRESERVING APPROXIMATIONS TO SUCCESSIVE

DERIVATIVES OF PERIODIC FUNCTIONS

BY ITERATED SPLINES

M.J. Shelley

and

G. R. Baker

Department of Mathematics
University of Arizona
Tucson, Arizona 85721



' Ph%,oca 1I) (1986) 95-112
North-Holland, Amsterdam

CHAOS AND COHERENT STRUCTURES IN PARTIAL DIFFERENTIAL EQUATIONS

Alejandro ACEVES, Hatsuo ADACHIHARA. Christopher JONES, Juan (Carlos LERMAN,
David W. McLAUGHLIN, Jerome V. MOLONEY* and Alan C. NEWELL
Applied Mathematwcs Program. ULiu'ers5iv of Ari:ona, luson. A Z "-8021, USA

This paper addresses the possible connections hetmeen chaos, the unpredictable behavior of solutions of finite dincnonal

%'stems of ordinary differential and dillerence equations and turbulence, the unpredictable behavior of solutions of partial

differential equations. It is dedicated to Martin Kru.skal on the occasion of his 60th birthday

I. Introduction singularities in finite time like those involved in the

The chaos that occurs in p.d.e.'s collapse of Langmuir waves or in filamentation in

cannot be fathomed by legalese nonlinear optics are also candidates. For example,
so we apply Occarn's razor singular solutions of the Euler equations may be

and using a laser useful in understanding the behavior of the
study structures in ring cacities Navier-Stokes equations at high Reynolds num-

An appealing idea of modern dynamics is that hers. Singular solutions like defects and disloca-

the complicated and apparently stochastic time tions certainly do play important roles in the

behavior of large and even infinite-dimensional pattern formations arising in continuum and con-

nonlinear systems is in fact a manifestation of a densed matter physics. The key idea is that each of

deterministic flow on a low-dimensional chaotic these structures is a natural asymptotic state that,

attractor. If the system is indeed low dimensional, by virtue of the various force balances in the

it is natural to ask whether one can identify the governing equations, develops an identity which

physical characteristics such as the spatial struc- does not easily decay or disperse away.

ture of those few active modes which dominate the One can envision two types of chaos occurring.

d%,namics. Our thesis is that these modes are closely The first is a phase or weak turbulence which

related to and best described in terms of a. ymptot- arises when there is an endless competition be- -

ically robust, multiparameter solutions of the non- tween equally resilient, localized coherent struc-

linear governing equations. We find it hard to tures which are infinite time asymptotic states and

define this robust nature precisely, but loosely which are initiated at random at various parts of

speaking the idea is that these solutions are very the physical domain. Examples of this type of

stable and resilient asymptotic states. They may be turbulence are solitary waves in the one-dimen-

coherent lumps like solitons and solitary waves. sional complex envelope equation, Rayleigh-
They may have the form of coherent wave packets. B36nard roll patterns with different orientations.,

They may have self-similar form. They need not and the oscillatory skew varicose states in low

necessarily be the asymptotic states which develop Prandtl number convection, it is to be expected

as tends to infinity; structures which develop that such dynamics may be low dimensional. The

*P1errinen address Dept of Physics. Iferiot-watt Uniser. second type of chaos is much more dramatic and,

,its. -dinhurgh, t.ll 4AS, UK for want of a better word, may be described as an

0167-2789/86/$03.50 Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
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